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Abstract

Pediatric Low-Grade Gliomas (pLGGs) are the most common set of heterogeneous
tumours occurring in children and its variability presents a clinical challenge. The
B-Raf proto-oncogene, serine/threonine kinase (BRAF ) status of pLGGs have im-
portant prognostic implications. Currently, BRAF status differentiation relies on
biopsy.

Advances in radiomics and computer vision have established these methods as ef-
fective tools for medical image analysis. This project aims to implement and evaluate
several methods, including fusion approaches between radiomics and deep learning,
to binarily classify BRAF fusion and BRAF V600E mutation.

FLAIR MR images from a bi-institutional retrospective cohort of 255 pediatric
patients acquired between January 2000 and December 2018 were analyzed. Ra-
diomics features were extracted, and MR images were registered and normalized. A
radiomics random forest classifier and a 3D residual neural network (ResNet) was im-
plemented. Additionally, appending features and risk scores fusion approaches were
also developed. Models were selected using grid search and validation loss. The area
under the receiver operating characteristic curve (AUC) was used to evaluate model
performance.

A 5-fold cross-validation scheme was executed on an internal training cohort of
161 patients. The radiomics random forest classifier predicted BRAF status of the
internal testing cohort with an AUC of 0.877 (95% CI, 0.865-0.893). Similarly, the
ResNet achieved an AUC of 0.853 (95% CI, 0.842-0.863). The appending features
fusion approach achieved an AUC of 0.888 (95% CI, 0.875-0.901), while the risk score
approach achieved an AUC of 0.899 (95% CI, 0.891-0.908). The improvement in clas-
sification performance of the risk score fusion approach was significant as compared
to the radiomics classifier (p = 0.0429) and the ResNet (p < 0.0001).

Radiomics and machine learning-based differentiation of BRAF status in pLGGs
appears feasible, and improvements in performances have the potential of enhancing
patient prognosis and outcomes.
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2.2.2 Näıve Feature Selection . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Random Forest Classifiers . . . . . . . . . . . . . . . . . . . . 8

2.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Adam Stochastic Optimization . . . . . . . . . . . . . . . . . 9

2.3.2 Loss Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.3 Deep CNNs & Limitations . . . . . . . . . . . . . . . . . . . . 10

2.3.4 3D ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Model Implementation & Evaluation . . . . . . . . . . . . . . . . . . 11

2.4.1 Scikit-learn & PyTorch Packages . . . . . . . . . . . . . . . . 11

2.4.2 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.3 Hyperparameter Tuning with GridSearchCV . . . . . . . . . . 11

2.4.4 Nested Cross-Validation . . . . . . . . . . . . . . . . . . . . . 12

2.4.5 Widening Factor . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.6 Area Under Receiver Operating Characteristic Curve . . . . . 12

2.4.7 Mann-Whitney U Test . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Radiomics & ResNet Fusion . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.1 Appending Features Approach . . . . . . . . . . . . . . . . . . 13

v



2.5.2 Risk Score Approach . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.3 Feature Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.4 Analytic Evidential Reasoning . . . . . . . . . . . . . . . . . . 14

2.5.5 Soft Voting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Methodology 15

3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Patient Cohort Criteria . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 The Hospital for Sick Children . . . . . . . . . . . . . . . . . . 15

3.1.3 Stanford University . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.4 MRI Sanity Check & Additional Patient Exclusions . . . . . . 16

3.1.5 Final Dataset Summary . . . . . . . . . . . . . . . . . . . . . 16

3.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Clinical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2 Label Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.3 Image Registration & Normalization . . . . . . . . . . . . . . 17

3.2.4 Radiomics Features . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Data Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Radiomics Random Forest Classifier . . . . . . . . . . . . . . . . . . . 19

3.4.1 Model Fitting & Evaluation . . . . . . . . . . . . . . . . . . . 19

3.5 3D ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.2 Model Training & Evaluation . . . . . . . . . . . . . . . . . . 20

3.6 Fusion Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6.1 Appending Features . . . . . . . . . . . . . . . . . . . . . . . 21

3.6.2 Risk Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Results 23

4.1 Radiomics Random Forest Classifier . . . . . . . . . . . . . . . . . . . 23
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Chapter 1

Introduction

1.1 Overview

Pediatric low-grade gliomas (pLGGs) are one of the most common set of heteroge-

neous tumours occurring in children [1]. Accounting for nearly 40% of all pediatric

cancers of the brain, pLGG’s variability in clinical behaviour presents significant

therapeutic challenges [2], [3]. The current standard of care for pLGG therapy in-

volves surgical excision wherever possible, and full resection is restorative. Unfortu-

nately, incomplete removal can lead to multiple recurrences in the form of a chronic

disorder, bringing about significant reductions in the quality-of-life for the patient

[4].

Several researchers have previously illustrated that molecular alterations in

genes of mitogen-activated protein kinase pathways are correlated with erratic pLGGs.

Notably, different classes of mutations in the B-Raf proto-oncogene, serine/threonine

kinase (BRAF ) gene can result in different implications in patient prognosis as

illustrated by Lassaletta et al. in 2017 [5]. This finding led to the development

of promising therapeutic agents that inhibit associated downstream pathways to

target increased risks of disease progression in particular mutation classes [6], [7].

These therapies have the potential to deliver more personalized responses to pLGGs

and thus grant more favourable patient outcomes. As such, this pretherapeutic

classification of BRAF status is critical to determine suitable candidates for tar-

geted treatments.

Currently, this classification relies on biopsies that can be invasive [8], [9]. How-

ever, a previous study demonstrated the feasibility of applying radiomics approaches

to binarily classify BRAF status through the use of FLAIR MR images. The au-

thors trained a random forest classifier to classify outcomes by linking the top 10

1
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quantitative radiomics features extracted from the images to their clinical statuses.

Areas under receiver operating characteristic curves (AUCs), which are representa-

tive of model performance, were computed [9]. The model yielded an internal test-

ing AUC of 0.75 (95% CI, 0.62–0.89) with a small dataset. Hence, improvements

in AUCs and testing on larger datasets are desired for potential model adoption in

clinical pathways.

Recent advances in deep learning and computer vision have shown great po-

tential in medical imaging, suggesting the predictive information available in con-

volutional neural network (CNN) features. Theoretical analysis and preliminary

results obtained also indicate that CNNs could be a viable alternative in BRAF

status classification, yielding similar AUCs as the random forest classifier. Studies

suggest that by integrating both CNN and radiomics models, a higher AUC can

be achieved [10]. For instance, näıve methods of combining both approaches, such

as training models separately and then averaging outputs, would produce a fusion

model that achieves a slightly better AUC than either model would individually.

1.2 Objectives

The purpose of this project is to develop improved methods for pretherapeutic dif-

ferentiation of BRAF status using radiomics and machine learning. We hope to

explore sophisticated methods of producing a fusion classification model that im-

proves upon the AUC yielded by previous standalone models. Such a model would

expand the current understanding of the correlation between molecular markers

and imaging features and would enable future machine learning studies of pLGG

MRI. The higher AUCs we hope to achieve is necessary for implementation of the

algorithm to predict BRAF status in clinical settings to enhance patient outcomes.

The objective of this project is three-fold:

(1) To successfully develop a radiomics random forest classifier as previously seen

in Wagner et al. and generate similar results on the larger target dataset;

(2) To implement a CNN architecture that classifies BRAF status at similar per-

formance as compared to the radiomics random forest classifier;

(3) To investigate sophisticated approaches to fuse the two above models for im-

proved classification AUCs.
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After development of the radiomics random forest classifier, a combination of

convolutional, pooling, and linear layers will be surveyed to optimize a CNN for in-

creases in AUC. To avoid vanishing/exploding gradients that are characteristic of

deep networks, ResNet [11] and related architectures will be explored. Finally, fol-

lowing the implementation of the CNN, sophisticated approaches of fusing these

models, such as using feature appending or risk scoring [12], will be investigated

to combine features and results for a singular optimized model. Additional ap-

proaches, such as feature mapping [13], evidential reasoning [14], and/or soft voting

[15] will also be introduced for future implementation. We propose that by imple-

menting a complex approach to merge radiomics and CNN models, a higher AUC

can be attained and thus result in a more optimized classification of BRAF status

in pLGGs.



Chapter 2

Background

2.1 Pediatric Low-Grade Gliomas

Pediatric low-grade gliomas (pLGGs) are one of the most common central nervous

system tumours that affect children of all ages. Although pLGG patients have a

high survival-rate when undergoing radiation and standard chemotherapy, comor-

bidities relating to their cancer, such as vision loss, epilepsy, and dysfunctions in

endocrine, motor, and neurocognitive functions devastate their quality of life [16].

The World Health Organization categorizes pLGGs as grades I or II, which include

juvenile pilocytic astrocytoma (JPA), ganglioglioma, dysembryoplastic neuroepithe-

lial tumor, pleomorphic xanthoastrocytoma, and diffuse low-grade glioma [17].

While an effective strategy to identify and treat all poor-risk groups has yet to

be developed due to pLGG’s heterogenous nature, precision medicine approaches

involving small molecular inhibitors has garnered much attention in the scientific

community. pLGGs often exhibit molecular alterations in genes that control associ-

ated cell signalling pathways, causing cells to become cancerous.

2.1.1 BRAF Status

The B-Raf proto-oncogene, serine/threonine kinase (BRAF ) gene is a key target

of pLGG molecular therapies due to its role in encoding instructions for proteins

that oversee chemical signal transmission across the cytosol from the extracellular

environment to the nucleus. The oncogene plays a role in the Ras/MAPK pathway,

which regulates cell proliferation, differentiation, migration, and apoptosis.

Fusions and mutations in the BRAF gene lead to significant alterations in molec-

ular signatures and cause deregulation of important pathways. The 2 molecular al-

4
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terations of the BRAF gene that is of concern is the BRAF fusion, which consists

of the duplication of a BRAF oncogene leading to loss of an autoregulatory domain

through insertion into fusion targets1 [1], and the BRAF V600E, which consists of

a point mutation leading to deregulation and constantly active protein kinase path-

ways2 [18].

2.1.2 Biopsies

The current standard of differentiation of BRAF status involves biopsies. However,

there are several disadvantages, including the generally invasive nature of the pro-

cedure. Due to the disease site and location, poor accessibility is ever-present, mak-

ing biopsies complex [16]. Due to the heterogenous nature of the tumours, biopsies

may not necessarily always capture an accurate depiction of the molecular charac-

ter of the entire pLGG. Additionally, biopsy procedures can often lead to infection

or hemorrhage if not completed up to standard, and in rare cases, there is the pos-

sibility of tumour seeding causing the cancer to spread [17]. All in all, biopsies are

undesirable.

2.1.3 FLAIR Magnetic Resonance Imaging

Figure 2.1: Representative FLAIR MR images from the target dataset. White re-
gions in the image correspond to tumorous regions of the brain and contribute to
the patient’s LGG.

Fluid-attenuated inversion recovery (FLAIR) is an advanced MRI sequence

used in most brain imaging protocols that allows the detection of superficial le-

sions. The long inversion time of the sequence suppresses cerebrospinal fluid in the

1The most common fusion target is the K1AA1549 gene.
2The BRAF V600E point mutation is associated with increased risk of progression and trans-

formation.
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resulting images, where white matter appears darker than grey matter [19]. Radi-

ologists use these FLAIR images to detect pLGGs and to annotate segmentations

that show cancerous regions. The dataset used in this project consists of unreg-

istered raw FLAIR images acquired from various sites. All FLAIR images will be

registered to an atlas in the preprocessing stage to ensure conformity in coordinate

systems prior to model training.

2.2 Radiomics

The growing field of radiomics involves the extraction of quantitative data or fea-

tures from medical images that are potentially characteristic of tumour behaviour.

By implementing machine learning algorithms to analyze a large number of fea-

tures, radiomics is able to improve prognosis and diagnosis through precision medicine

approaches [20].

2.2.1 Radiomics Feature Extraction

Radiomics features are extracted through mathematical approaches and captures

textural information, such as spatial distributions of signal intensities or pixel inter-

relationships [21]. The hundreds of features selected in the development of the ra-

diomics random forest classifier are the same as the pre-extracted features provided

by Wagner et al. The PyRadiomics Python package will be employed to extract the

features used to construct the models of this project. While the package full doc-

umentation is available at “Amadasun and King, PyRadiomics, Readthedocs.io,

2022” [22], feature classes and example features that can be extracted from the im-

age are summarized below.

First Order Statistics

First-order statistics describe voxel intensity distributions within a region-

of-interest (ROI), or segmentation, on the MR image. Several commonly

used metrics are grouped into this class. Features of note include voxel

energy and entropy.

Energy is a measure of magnitude. Larger values imply greater sums of
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the squares of these voxels. It is defined as:

energy =
Np∑
i=1

(X(i) + c)2 (2.1)

where X is the set of Np voxels included in the ROI and c represents a

value needed to shift intensities to prevent negative values in X.

Entropy specifies the uncertainty when encoding image values. It is de-

fined as:

entropy = −
Ng∑
i=1

p(i) log2 (p(i) + ϵ) (2.2)

where P (i) is the first order histogram with Ng discrete intensity levels

and ϵ is an arbitrarily small positive number.

Shape Features

Shape features are descriptors of the image space occupied by the seg-

mentation. Examples of 3D shape features include voxel volume, surface

area, and sphericity. Similarly, pixel surface, perimeter, and elongation

values are examples of 2D shape features.

Gray Level Matrix (GLM) Features

Gray level matrix features are further subdivided into co-occurrence,

run length, size zone, and dependence matrices. These features are es-

tablished in the field of radiomics and are used for texture analysis and

for descriptions of voxel spatial relationships. Specific details are avail-

able in the PyRadiomics documentation [23].

Wavelet Derived Features

In addition to features extracted from the original image, features may

be extracted from image derivatives after application of filters. One fil-

ter of interest is the wavelet filter, which yields 8 image derivatives per

level (i.e., for each of the 3 dimension of the image, derivatives of all

possible combinations of ‘high pass’ and ‘low pass’ filters are generated).

The features extracted from these derivatives were also included.
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2.2.2 Näıve Feature Selection

Given the number of features extracted, feature selection may be required to limit

undesirable outcomes where irrelevant or unimportant features hold substantial

weight. A näıve method of feature selection used in this project is based on the fit-

ted feature_importances_ attribute available in Scikit-learn random forest mod-

els. This attribute outlines the importance of input features based on the mean and

standard deviation of accumulation of the impurity decrease of each tree in the ran-

dom forest [24]. For the purposes of this project, the top n number of features as

measured by its importance will be extracted and used to train and evaluate a sep-

arate random forest classifier to determine the effect of feature selection on perfor-

mance. While this simple method of feature selection will be used, several other

statistical approaches, such as chi-squared or ANOVA tests, are available for future

evaluation.

2.2.3 Random Forest Classifiers

Random forest classifiers, made up of decision tree predictors, are models for en-

semble learning that can be used for classification tasks. During training, multiple

layers of decision trees are constructed based on randomly sampled vectors of in-

put features [25]. Similar to majority voting, the final output of the random forest

is the class chosen by the greatest number of trees. Random forests usually outper-

form traditional decision trees, which often overfit to their training dataset. Avoid-

ing overfitting in BRAF differentiation is crucial as the model needs to be general-

izable to unseen internal images or data from external institutions for clinical adop-

tion.

2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of neural network primarily used

in image related tasks, such as classification, object detection, or segmentations.

CNNs have convolutional and pooling layers in addition to the fully connected lay-

ers in artificial neural networks. The convolutional layers create feature maps of

the input images by iterating a kernel over the image and extracting features, while

pooling layers down-sample the convolution output [26]. The final flattening step

transforms the data into a one-dimensional array, which is ultimately fed through

fully connected layers for classification.
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2.3.1 Adam Stochastic Optimization

The Adam optimizer is an established variation of the stochastic gradient descent

algorithm used in many deep learning models. Developed at the University of Toronto,

the algorithm updates weights of the network iteratively by combining advantages

of the Adaptive Gradient algorithm, which sets a learning rate for each parame-

ter, and the Root Mean Square Propagation algorithm, which adapts these learn-

ing rates based on the average of previous gradient magnitudes [27]. Adam opti-

mization is proven to empirically converge faster with better results than preced-

ing stochastic methods [27] and will be used to construct the CNN model in this

project. For detailed mathematical theory, please consult Kingma and Ba, 2014

[27].

Figure 2.2: Visualization of the “loss” landscape travelled by the Adam stochastic
optimization algorithm. Adam seeks to minimize loss by traversing the network and
adjusting weights. Reproduced from Jin et al., 2015 [28].

2.3.2 Loss Criterion

In optimization, a loss criterion, or “error function”, is a function that maps obser-

vations of variables to a real number representing “cost”. Machine learning models

seek to minimize this “cost” value. The criterion used in the neural networks of this

project will be BCEWithLogitsLoss, a form of binary cross entropy loss measured

between the input probabilities and target labels with an implicit sigmoid activa-

tion layer. The unreduced version is defined as:

ℓ(x, y) = L = {l1, . . . , lN}⊤, ln = −wn [yn · log σ(xn) + (1− yn) · log(1− σ(xn))] ,

(2.3)



CHAPTER 2. BACKGROUND 10

where N is the batch size. More information can be found in the PyTorch docu-

mentation [29].

2.3.3 Deep CNNs & Limitations

Deep CNNs gained prominence in 2012 where additional layers of convolution were

thought to progressively learn more complex features and thus perform better im-

age learning [30]. However, as CNN architectures increased in depth, parameters

that were thought to reduce overfitting, such as regularization parameters or dropout,

began to be ineffective. Studies show that this reduction in performance could be

attributed to the optimizer used or vanishing/exploding gradients [31]. Residual

learning was hence developed to combat limitations of deep CNNs.

2.3.4 3D ResNet

Residual neural networks, or “ResNets”, are deep neural networks that employ

residual blocks or skip connections to bypass certain layers of the network. The

layer skips address the issue of vanishing/exploding gradients and contain nonlin-

earities such as ReLU and batch normalization [11]. By implementing these skips in

our deep CNN, any network layers that are disadvantageous to the performance of

the architecture will be skipped by the parameter tuning process. An establish 3D

version of the ResNet would be able to capture spatial information that exists in

the slices of each MR image in the dataset and will be implemented for this project.

For more information on the architecture, please refer to Section 3.5.1. Addition-

ally, the architecture used in this project is based on Hara et al., 2017, whose work

affirmed the 3D ResNet’s ability to extract spatiotemporal features for action recog-

nition [32].

In neural networks, activation functions are responsible for transforming the

weighted inputs into outputs of a particular node. Two activation functions are of

note for this project, the rectified linear activation function (ReLU) and the sig-

moid activation function.

ReLU is a piecewise linear function that outputs the input directly for all posi-

tive inputs and 0 for all non-positive inputs [33]. The sigmoid activation function is

defined as:

S (x) =
1

1 + e−x
(2.4)

Both functions are used in a variety of neural networks and have respective ad-
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vantages and disadvantages. The sigmoid function struggles in networks with many

layers because of the vanishing gradient problem; however, due to it’s mathemati-

cal simplicity and compatibility with binary classification, it will be used as a final

activation function [33], [34]. In comparison, ReLU is able to overcome the van-

ishing gradient problem and is suitable for networks with many layers, such as the

ResNet.

2.4 Model Implementation & Evaluation

2.4.1 Scikit-learn & PyTorch Packages

Scikit-learn is a Python package that integrates a wide variety of machine learn-

ing algorithms and models for various tasks [35]. This project will use Scikit-learn

to implement and fit the radiomics random forest classifier, as well as to compute

model performance. PyTorch is an open source dynamic machine learning frame-

work that allows easy implementation of CNNs [36]. This project will use PyTorch

to implement the 3D ResNet, to train the neural network, and to evaluate its per-

formance through AUCs.

2.4.2 Overfitting

Overfitting is a frequent concern of many deep learning models as it prevents the

generalization of the model to unseen data. In medicine, this generalization is cru-

cial for clinical adoption as medical data is often varied across institutions. To pre-

vent overfitting, dropout layers will be implemented for regularization [37]. Addi-

tionally, training will cease when the model validation loss fails to decrease for 3

epochs in a row.

2.4.3 Hyperparameter Tuning with GridSearchCV

GridSearchCV is a Scikit-learn functionality that allows for easy hyperparameter

tuning of various deep learning models. Via a parameter grid defined by the user,

GridSearchCV will implement, train, and evaluate all combinations of the grid to

delineate the combination of hyperparameters that produces the model with the

greatest performance [38]. The downfall is the time-consuming nature of the pro-

cess; however, GridSearchCV will likely find a better performing model than if only

a few parameter combinations were tested.
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2.4.4 Nested Cross-Validation

k-fold cross-validation is often used to estimate the true performance of a machine

learning model when making classification predictions. This can be useful when at-

tempting to optimize the hyperparameters of a model or when comparing analogous

models on the same classification task. By resampling the testing dataset into k

folds and holding out one fold for validation in each iteration, the model is trained

and evaluated with different combinations of samples, thus avoiding overestimates

of model skill [39]. To prevent biases when the testing dataset is too hard or too

easy, nested cross-validation will be used for an accurate representation of accuracy

[40].

2.4.5 Widening Factor

The widening factor of neural networks control the width of the network architec-

ture and can expand or reduce the number of channels in the CNN. A widening

factor of 0.5 was used in this project that effectively speeds up the training of the

ResNet by a factor of 2 without affecting the ultimate performance.

2.4.6 Area Under Receiver Operating Characteristic Curve

The receiver operating characteristic (ROC) curve is a measure of usefulness for a

particular binary classification model. The curve accounts for biases caused by the

dataset distribution between the two labels and is created by plotting the true pos-

itive rate (TPR) against the false positive rate (FPR) [41]. By computing the area

under this resulting ROC curve (AUC), an estimation of the model performance

can be inferred.

2.4.7 Mann-Whitney U Test

Comparing many models and methods is common in applied machine learning. As

multiple methods are developed in this project, a statistical test is needed to com-

pare significance in differences of model skill. The k-fold cross-validation procedure

generates observations that are dependent, which violates a key assumption of the

commonly used paired Student’s t-test [42]. Additionally, other assumptions of the

distribution of the AUCs, such as its Gaussian nature, cannot be made. Thus, an

unpaired, nonparametric test is needed. The Mann-Whitney U test, which tests the
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null hypothesis that the distribution underlying the two sample groups are equal,

meets these requirements [42].

2.5 Radiomics & ResNet Fusion

2.5.1 Appending Features Approach

One possible approach of integrating radiomics and the ResNet model is by ap-

pending the radiomics features within the ResNet. Radiomics features extracted

via PyRadiomics and ResNet image features extracted from the convolutional lay-

ers may work in harmony to achieve a higher AUC. The radiomics features would

be implemented and fed into the fully connected layers of the ResNet during the

feedforward segment.

2.5.2 Risk Score Approach

Another possible fusion method is referred to as the “risk score” approach. Zhang

et al., 2021 developed an analytic pipeline combining radiomics and transfer learn-

ing features to predict overall survival in pancreatic ductal adenocarcinoma (PDAC)

patients [12]. Zhang et al. fitted 2 separate random forest classifiers using two fea-

ture banks, one derived from PyRadiomics and the other extracted from an 8-layer

CNN. The probabilities of death (output) from these two models were then referred

to as risk scores and used to fit a final fusion random forest prognosis model. A

40% increase in AUC was observed (yielded 0.84), indicating the method to be a

tremendous success in PDAC survival prediction [12].

A similar approach may be applied to this project by treating the output labels

of the radiomics random forest classifier and the ResNet as risk scores. These out-

puts will then be inputted into a final fusion random forest classifier as features and

evaluated, whereby a higher AUC may be achieved.

2.5.3 Feature Mapping

Feature mapping is the process of representing image features along with its rele-

vancy or score on a graph. This method could be used to create a map of radiomics

features which is then fed into a deep CNN for convolutional classification. Zhang

and Qi et al. demonstrated the effectiveness of this method at increasing model ac-

curacy when predicting EGFR gene mutation status of lung adenocarcinoma using
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CT radiomics features [43]. The method could potentially be translated for MRI

radiomics features in pLGGs.

2.5.4 Analytic Evidential Reasoning

Analytic evidential reasoning can be used to fuse the outputs of the radiomics and

CNN models. This approach was used to combine many-objective radiomics and a

3D CNN to predict lymph node metastasis in head and neck cancer with success-

ful results [14]. The original analytical evidential reasoning recursive algorithm is

outlined by Wang et al., 2006 [44].

2.5.5 Soft Voting

Whitney et al, 2019 demonstrated an approach of using soft voting to construct a

fusion classifier combining radiomics based methods and CNN based methods [15].

Soft voting involves summing up the weighted probability (based on the importance

of the model that was used to generate the probability) of a particular input for

each target class. The label corresponding to the greatest sum of weighted prob-

abilities becomes the classification output. Whitney et al. observed a statistically

significant improvement in performance when using this approach to classify breast

tumour using MRI [15].
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Methodology

3.1 Data

3.1.1 Patient Cohort Criteria

The target dataset contained patients diagnosed with pLGG in 2 children’s hospi-

tals between January 2000 and December 2018. It is more than double the size of

datasets used in previous studies. These patients have received a FLAIR MRI seg-

mented by a licensed radiologist. The Hospital for Sick Children dataset contained

a total of 397 patients, while the Stanford University dataset contained 41 patients,

for a bi-institutional dataset totalling 438 patients. Of these, only patients who

have a molecular signature identified to be BRAF fusion or BRAF V600E point

mutation were included in this project.

3.1.2 The Hospital for Sick Children

The compiled dataset of The Hospital for Sick Children in Toronto consisted of 397

patients with tumours of varying pathological diagnoses. 143 patients exhibited a

BRAF fusion molecular character, while 71 exhibited a BRAF V600E point muta-

tion.

3.1.3 Stanford University

The compiled dataset of The Lucile Packard Children’s Hospital at Stanford Uni-

versity consisted of 41 patients of the target molecular character. 32 patients were

identified to have a BRAF fusion alteration while 9 patients had a BRAF V600E

point mutation molecular character.

15
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Table 3.1: Final number of patients included in dataset by gene alteration classes
and institution.

BRAF Fusion BRAF V600E Mutation

The Hospital for Sick Children 143 71

Stanford University 32 9

3.1.4 MRI Sanity Check & Additional Patient Exclusions

MR images underwent validation where segmentations by radiologists were verified.

Images with visual artefacts, such as areas of the brain that is unclear or cut off,

were excluded from model training. Additionally, images with missing or unclear

segmentations, or any form of corrupted data, were also excluded from this project.

3.1.5 Final Dataset Summary

MR images from a bi-institutional cohort of 255 pediatric patients were included.

The cohort consisted of 136 boys and 119 girls, and has a mean age of 8.62 years.

pLGGs had varying pathological diagnoses and clinical parameters, such as tumour

location in the brain.

3.2 Data Preprocessing

3.2.1 Clinical Data

The dataset contained clinical information of all patients, including gender, age, tu-

mour location, such as supratentorial, infratentorial, or trans-tentorial, and whether

the tumour exists in multiple locations. These characteristics could assist with clas-

sification; however, to simplify testing of fusion models, they were excluded at this

stage. To prepare for future use, genders were binarily encoded, ages were reformat-

ted to datetime format, and tumour locations were one-hot encoded.

3.2.2 Label Encoding

To aid in classification, the ground truth labels, BRAF fusion and BRAF V600E,

were encoded binarily in the dataset. A ‘0’ indicates BRAF fusion, whereas ‘1’ in-

dicates BRAF V600E point mutation.
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3.2.3 Image Registration & Normalization

Raw 3-Dimensional MRI of each patient were of varying sizes. As such, all images

were registered to the SR124 atlas to ensure that all images being fed into models

were on the same coordinate system. Bias correction and normalization between 0

and 1 via the NumPy Python package was also applied to increase computation ef-

ficiency and time, as well as to remove inconsistencies and avoid biases in the data

from pixel intensity variations across FLAIR sequences from different sources.

3.2.4 Radiomics Features

Radiomics features were extracted from preprocessed MRI using PyRadiomics. The

set of extracted radiomics features from the original image (i.e. no filters applied)

are available in Appendix B (total of 107).

Extracted features required additional unsupervised filtering to account for var-

ious biases and potential for errors. Groups of highly correlated features will in-

crease the complexity of the model without bringing substantial additional pre-

dictive information. As this increases the risk of errors, highly correlated features

with a correlation factor greater than 0.95 were removed. A baseline method of fea-

ture selection known as variance thresholding was also applied to remove all zero-

variance and low-variance (correlation < 0.05) features, such as features that ex-

hibit the same value in all samples across the dataset. Figure 3.1 depicts the fea-

ture correlation maps before and after filtering. Removed features were set to 0 and

spliced out prior to model fitting.

Figure 3.1: Representative correlation map of radiomics features. a) Correlation
map of 851 radiomics features before preprocessing. b) Correlation map of ra-
diomics features after preprocessing where highly correlated and zero-variance or
low-variance features are removed.
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Additionally, näıve feature selection was implemented, which selects for the top

n = 50 important features according to the feature_importances_ attribute avail-

able in random forest models. The effect of this method was evaluated, and results

are shown in Section 4.1.1.

3.3 Data Allocation

Figure 3.2 summarizes the breakdown for the complete compiled dataset undergo-

ing 5-fold nested cross-validation. The Hospital for Sick Children ”internal” dataset

was randomly split for each iteration n, such that 75% of that dataset was referred

to as the “development” set. The remaining 25% was known as the “evaluation”

set. The development dataset was used for training and validation (ie. 5-folds dataset

split during nested cross-validation), while the evaluation dataset contained images

that were unseen to the model and was used to evaluate model skill. Patients in

the Stanford ”external” dataset is allocated to be used for external testing only.

As external images were not fully available at the time of this project, they will be

evaluated by developed models in the future. Thus, only the complete set of inter-

nal data from The Hospital for Sick Children was used for training and evaluation,

with results summarized in the subsequent sections.

Figure 3.2: Dataset split for development, internal testing, and external testing.
75% of the data from The Hospital for Sick Children was used as the development
dataset where 5-folds cross-validation was implemented. The remaining 25% is
known as internal testing, whereas external testing refers to the unseen testing set
of data from Stanford. A random seed is set to split the data for each of the n iter-
ations and noted for reproducibility.
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The mean AUC may be calculated by:

Mean AUC =
1

5

5∑
k=1

AUCk (3.1)

3.4 Radiomics Random Forest Classifier

A similar radiomics model illustrated by Wagner et al., 2021 [9] was developed us-

ing Scikit-learn. Fitting and prediction were completed on remote workstations and

High-Performance Computing (HPC) clusters available at The Hospital for Sick

Children.

3.4.1 Model Fitting & Evaluation

The development dataset, containing a random 75% of the internal patients (161

patients), was used for model fitting. The evaluation dataset, containing the re-

maining 25% of the internal patients (53 patients), was reserved for internal testing.

5-fold nested cross-validation was conducted. GridSearchCV was applied over

the set of model parameters outlined in Table 3.2. The model with the best per-

formance as outlined by Scikit-learn’s best_estimator_ attribute was selected and

used to evaluate the internal testing dataset. This process was repeated twice, once

with näıve feature selection and once without.

Table 3.2: GridSearchCV parameter grid for the radiomics random forest classifier.

Hyperparameters Candidate Values

n estimators 25, 50, 100

min samples leaf 2, 4, 8

max depth 1, 2, 4

max features ’auto’, None

max samples 0.5, 0.75, 1

3.5 3D ResNet

A 3D ResNet model was implemented using PyTorch. Training and evaluation were

completed on remote workstations and HPC clusters available at The Hospital for

Sick Children.
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3.5.1 Architecture

A 3D ResNet architecture with skip connections was implemented according to

Hara et al., 2017 [32]. Normalized tensors of MR images were fed through a com-

bination of residual blocks and dropout functions (see Figure 3.3). Each residual

block contains 2 sequences of a 3D convolution followed by batch normalization and

ReLU. Disadvantageous network layers are skipped during parameter tuning, ad-

dressing the vanishing gradient problem.

Figure 3.3: Implemented 3D ResNet architecture. Convolutional, pooling, and fully
connected layers are depicted along with the breakdown for each residual block in
the ResNet architecture.

The loss function used was BCEWithLogitsLoss. Adaptive average 3D pooling

was used prior to the fully connected layers and the sigmoid activation function was

used to produce the output. A widening factor and dropout rate of 0.5 was also

incorporated.

3.5.2 Model Training & Evaluation

The 3D ResNet was trained with an optimizer learning rate of 0.01 and batch size

of 8. The model was allowed to be trained for 15 epochs; however, to increase effi-

ciency and to prevent overfitting, training ceased when the validation loss failed to

decrease for 3 epochs in a row. Checkpointing was done for each epoch such that

the model performance was determined by testing with the evaluation dataset.
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3.6 Fusion Approaches

3.6.1 Appending Features

The appending features approach involves appending radiomics features to the fully

connected layers of the 3D ResNet in the hopes of providing additional predictive

information for the classifier to use. The model was developed using Scikit-learn

and training/evaluation were completed on remote workstations available at The

Hospital for Sick Children.

The 3D ResNet was implemented and trained using methods and parameters

outlined in Section 3.5. The post-processed PyRadiomics-extracted features of each

respective patient was appended to the first fully connected layer (Figure 3.4). An

additional fully connected layer was also added with dropout prior to classification

output.

Figure 3.4: Schematic of the appending features fusion approach. Radiomics fea-
tures are appended to the fully connected layer of the neural network as seen.

3.6.2 Risk Score

As seen in Figure 3.5, the risk score approach was implemented as described by

Zhang et al., 2021, with the radiomics random forest model and 3D ResNet imple-

mented and trained using methods and parameters outlined in the above sections

[12].

Conforming with the nested cross-validation data allocation scheme, patients

in the development dataset was split into 5 folds. Throughout the training process,

each of these folds acted as the validation set at some point for both the radiomics

random forest classifier and the 3D ResNet, where outputs were generated by re-
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Figure 3.5: Schematic of the pipeline for the risk score fusion approach. The Ra-
diomics random forest classifier and the 3D ResNet are trained separately. Outputs
are then fused as inputs into the final fusion random forest model.

spective models trained using data from the other 4 folds. By doing so, a prediction

from the radiomics random forest classifier and a prediction from the 3D ResNet

is available for each patient in the development dataset. These predictions acted

as the input features of a final fusion random forest model that classifies BRAF

status, where another 5-folds cross-validation and GridSearchCV was conducted

(hyperparameters outlined in Table 3.3). This same pipeline was used on the evalu-

ation dataset to evaluate whole model skill.

Table 3.3: GridSearchCV parameter grid for the final fusion random forest model.

Hyperparameters Candidate Values

n estimators 5, 10, 25

min samples leaf 1, 2, 4

max depth 1, 2

max features None

max samples 0.5, 0.75, 1
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Results

4.1 Radiomics Random Forest Classifier

4.1.1 Näıve Feature Selection

Table 4.1 and Figure 4.1 summarizes the AUCs achieved by the radiomics random

forest classifier over 30 trials and the effect of näıve feature selection. AUCs were

determined using Scikit-learn’s roc_auc_score and applied to predictions from the

radiomics random forest classifier and labels of the respective datasets. 95% confi-

dence intervals are indicated in brackets. Näıve feature selection showed minimal,

non-significant improvement in AUCs across the datasets. An internal testing AUC

of 0.877 was achieved with a 95% confidence interval of 0.865 to 0.893.

Table 4.1: Summary of average AUCs achieved by the radiomics random forest
classifier over 30 trials with and without näıve feature selection.

Without Naive Feature
Selection

With Naive Feature
Selection

Training
0.959 (95% CI,
0.949-0.968)

0.963 (95% CI,
0.947-0.978)

Internal Testing
0.876 (95% CI,
0.863-0.890)

0.877 (95% CI,
0.865-0.893)

23
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Figure 4.1: Radiomics random forest classifier results over 30 trials. a) AUC of
training and internal testing without näıve feature selection. b) AUC of train-
ing and internal testing with naive feature selection. c) Training AUC without
and with näıve feature selection. d) Internal testing AUC without and with näıve
feature selection. Näıve feature selection showed minimal increase in AUC; how-
ever, the change is not significant. Results in boxes are presented as means and in-
terquartile range.

4.1.2 Summary of AUC

Table 4.2: Average training and internal testing AUCs achieved by the radiomics

random forest classifier over 30 trials.

AUC

Training 0.963 (95% CI, 0.947-0.978)

Internal Testing 0.877 (95% CI, 0.865-0.893)

4.2 3D ResNet

4.2.1 Training Curves & Loss

Figure 4.2 illustrates representative training and internal testing error/loss curves

over epochs. AUCs were determined using Scikit-learn’s roc_auc_score and ap-
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plied to predictions from the 3D ResNet and labels of the respective datasets. Loss

value was measured using the network criterion. On average, training ceased around

epoch 12, where validation loss often sees an increase for 3 epochs in a row. The

optimal epoch is between the range of 8-10 on average and the model corresponding

to this epoch is used to determine model performance using the evaluation dataset

(internal testing).

Figure 4.2: Representative training curves of the 3D ResNet classifier. a) Model
performance of training and internal testing datasets as measured by AUC over 15
epochs. b) Model loss of training and internal testing datasets over 15 epochs.

Table 4.3 summarizes average loss measured by the 3D ResNet criterion over 15

trials. 95% confidence intervals are indicated in brackets.

Table 4.3: Average loss measured by the 3D ResNet classifier over 15 trials.

Loss

Training 0.382 (95% CI, 0.368-0.396)

Internal Testing 0.341 (95% CI, 0.293-0.389)

4.2.2 Summary of AUC

Table 4.4: Average training and internal testing AUCs achieved by the 3D ResNet
classifier over 15 trials.

AUC

Training 0.903 (95% CI, 0.886-0.919)

Internal Testing 0.853 (95% CI, 0.842-0.863)
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4.3 Appending Features Fusion Approach

AUCs achieved by the appending features fusion approach were measured over

15 trials. Likewise to the 3D ResNet, AUC was determined using Scikit-learn’s

roc_auc_score and applied to predictions from the 3D ResNet post-feature ap-

pending and labels of the respective datasets. 95% confidence intervals are indi-

cated in brackets. An internal testing AUC of 0.888 was achieved with a 95% confi-

dence interval of 0.875 to 0.901.

4.3.1 Summary of AUC

Table 4.5: Average training and internal testing AUCs achieved by the appending
features fusion approach model over 15 trials.

AUC

Training 0.900 (95% CI, 0.872-0.929)

Internal Testing 0.888 (95% CI, 0.875-0.901)

4.4 Risk Score Fusion Approach

AUCs achieved by the risk score fusion approach were measured over 15 trials.

AUC was determined using Scikit-learn’s roc_auc_score and applied to predictions

of the final fusion classifier and labels of the respective datasets. 95% confidence

intervals are indicated in brackets. An internal testing AUC of 0.899 was achieved

with a 95% confidence interval of 0.891 to 0.908.

4.4.1 Summary of AUC

Table 4.6: Average training and internal testing AUCs achieved by the risk score
fusion approach model over 15 trials.

AUC

Training 0.918 (95% CI, 0.902-0.934)

Internal Testing 0.899 (95% CI, 0.891-0.908)
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4.5 Overview of Methods

Table 4.7 provides an overview of the training and internal testing AUCs achieved

by each of the methods outlined in this project. The highest internal testing valida-

tion was achieved by the risk score fusion method at 0.899.

Table 4.7: Overview of internal testing AUCs by method. 95% confidence intervals
are indicated in brackets.

Risk Score Append ResNet Radiomics

Training
0.918 (95% CI,
0.902-0.934)

0.900 (95% CI,
0.872-0.929)

0.903 (95% CI,
0.886-0.919)

0.963 (95% CI,
0.947-0.978)

Internal
Testing

0.899 (95% CI,
0.891-0.908)

0.888 (95% CI,
0.875-0.901)

0.853 (95% CI,
0.842-0.863)

0.877 (95% CI,
0.865-0.893)

4.5.1 Statistical Evaluation

Figure 4.3 shows the statistical comparison between the internal testing AUCs achieved

by the outlined methods. The Mann-Whitney U test was used. The risk score fu-

sion approach showed a significant improvement in performance as compared to

the standalone 3D ResNet (p < 0.0001), and the standalone radiomics random

forest classifier (p = 0.0429). The appending features fusion approach showed a

significant improvement in performance as compared to the standalone 3D ResNet

(p = 0.0007), but not the standalone radiomics random forest classifier. The differ-

ences between all other unmentioned comparisons were also not significant.
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Figure 4.3: Overview of internal testing AUCs achieved by method. Risk score fu-

sion approach showed a significant difference in performance as compared the to

standalone radiomics random forest classifier or the 3D ResNet. Results in boxes

are presented as means and interquartile range.
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Discussion & Future Directions

Several methods of BRAF status differentiation have been illustrated in this project.

While each approach varies in their algorithm complexity and structure, their per-

formances indicate predictive signatures and biomarkers of pLGG BRAF status

were successfully extracted from MR images.

Molecular signatures of pLGG are currently assessed through tumor tissue anal-

ysis via biopsies wherever possible. Patients with nonresectable tumors are sub-

mitted to surgical procedures instead of targeted precision medicine therapy. The

heterogenous nature of pLGG tumours was observed on the FLAIR sequences used

in this project, where qualitative factors of the tumour, such as its volume, shape,

and location, varied as expected. However, MR image analysis is better equipped

to accommodate the heterogeneity as opposed to biopsies. As such, the analysis of

MR images is pivotal in identifying pLGG molecular character for improved prog-

nostication.

5.1 External Dataset Evaluation

As stated in Section 3.3, external testing images from Stanford University were not

yet available at the time of experiments. As such, the models’ generalizability to

data from external institutions was not evaluated, which is desirable for clinical

adoption. An immediate future step is to complete the compilation and preprocess-

ing of external institutional data, and complete preparation such that they will be

ready for evaluation by each of the illustrated methods.

29
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5.2 Radiomics Feature Selection

As expected, based on previous relevant studies, radiomics features were predictors

of mutational status. However, further investigation of additional feature selection

methods would be advantageous. While naive feature selection was implemented in

this project, it did not have a significant effect on model performance. As feature

selection is regarded as a crucial step in applied machine learning, other methods

of selection, such as using Recursive Feature Elimination (RFE) [45], should be ex-

plored. Statistical methods of measuring feature correlation, such as via chi-squared

or ANOVA tests can also be explored for feature scoring [46].

5.3 Random Forest Classifier Optimization

In addition to evaluating the effect of various feature selection methods to optimize

the random forest classifier, additional hyperparameter tuning is warranted. Con-

tinued use of GridSearchCV will be needed to arrive at an optimized model capable

of yielding maximum AUC. Other criteria, such as the Gini index, can also be ex-

plored as a replacement for the entropy criterion [47].

5.4 3D ResNet Optimization

Due to the complex nature of ResNet models, many adjustments are possible to

optimize performance. Elementary training hyperparameters, such as batch size,

learning rate, and epochs can be further tuned to pinpoint the optimal combina-

tion. Additionally, architectural modifications, either to model depth or convolu-

tional layer dimensions, can be explored for improvements in performance. Further

testing is also mandated to elucidate the true performance of the 3D ResNet. More

trials should be executed to arrive at larger sample sizes of AUCs for greater confi-

dence in performance.

5.5 Fusion Optimization

Based on the results of the 2 fusion models, approaches to combining radiomics and

convolutional neural networks seem to be feasible pathways to improve classification

performance for BRAF differentiation. Notably, the risk score approach generates

results having lower bounds that are greater or on par with the averages of other
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methods. However, it is at a disadvantage in terms of the training process due to

its model pipeline complexity. Specifically, the risk score model was much more

computationally expensive and time consuming to train and evaluate. As such,

there is a need to evaluate the trade-off between performance and model pipeline

complexity. Perhaps it is viable to reduce the number of hyperparameters or chan-

nels/layers involved without dramatically affecting performance.

5.6 Integration of Clinical Features

As clinical features were set aside for these experiments, the effect on performance

by the presence of clinical features cannot be concluded. Radiological features, such

as clinical tumour location, and patient demographic information, such as age, may

hold predictive power and should be analyzed. Additionally, pathological diag-

noses of these pLGGs were not examined. The skewed nature of the external test-

ing dataset in terms of pathological diagnoses warrants further investigation on its

predictability.

A restrictive approach may be adopted for future studies such that only a par-

ticular pathological diagnosis or anatomical location is analyzed and tested for pre-

dictability of BRAF status [9]. However, due to the limited sample size and the

low prevalence of certain diagnoses, these studies will likely be limited to multi-

institutional collaborations.

5.7 MRI Sequences

The retrospective nature of the dataset contained acquired images from varying

MRI vendors and parameters, leading to heterogeneity in the FLAIR MRI. The

technical variation in images is representative of real-world clinical practice and was

included in the attempt to develop robust models. To that end, model predictabil-

ity to classify other MRI sequences, such as T2WI, DWI, and contrast enhanced

T1WI, could be explored [9].

5.8 Multi-class Classification

While the two most common pLGG molecular alterations were the focus of this

project, other characters relating to the NF1 (neurofibromatosis 1), CDKN2A (cyclin-

dependent kinase inhibitor 2A), and FGFR (fibroblast growth factor receptor) genes
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are also present [48]–[50]. As such, multi-class classification may be investigated

to incorporate the other molecular signatures of pLGGs that were currently ex-

cluded.



Chapter 6

Conclusion

This project presents radiomics and residual neural network methods for the pre-

diction of BRAF status in pLGGs using FLAIR MR images. The optimal model

developed was the risk score fusion approach which achieved an AUC of 0.899 on

the internal testing cohort. This fusion classification model will expand the current

understanding of the correlation between molecular markers and imaging features

and will enable future machine learning studies of pLGG MRI. With continued im-

provements in performance and increases in AUCs, radiomics and machine learning-

based differentiation may be adopted for prediction of BRAF status in clinical

pathways and has the potential of enhancing patient prognosis and outcomes.
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Appendix A

Code Repository

The code repository corresponding to this project is available on Github at

https://github.com/IMICSLab/pLGG Predict Status.
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Appendix B

Original Image Radiomics Features

# Pyradiomics Class Feature Name

1 Shape VoxelVolume

2 Shape Maximum3DDiameter

3 Shape MeshVolume

4 Shape MajorAxisLength

5 Shape Sphericity

6 Shape LeastAxisLength

7 Shape Elongation

8 Shape SurfaceVolumeRatio

9 Shape Maximum2DDiameterSlice

10 Shape Flatness

11 Shape SurfaceArea

12 Shape MinorAxisLength

13 Shape Maximum2DDiameterColumn

14 Shape Maximum2DDiameterRow

15 Gray Level Difference Matrix GrayLevelVariance

16 Gray Level Difference Matrix HighGrayLevelEmphasis

17 Gray Level Difference Matrix DependenceEntropy

18 Gray Level Difference Matrix DependenceNonUniformity

19 Gray Level Difference Matrix GrayLevelNonUniformity

20 Gray Level Difference Matrix SmallDependenceEmphasis

21 Gray Level Difference Matrix SmallDependenceHighGrayLevelEmphasis

22 Gray Level Difference Matrix DependenceNonUniformityNormalized

23 Gray Level Difference Matrix LargeDependenceEmphasis

24 Gray Level Difference Matrix LargeDependenceLowGrayLevelEmphasis

25 Gray Level Difference Matrix DependenceVariance

26 Gray Level Difference Matrix LargeDependenceHighGrayLevelEmphasis

27 Gray Level Difference Matrix SmallDependenceLowGrayLevelEmphasis
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Table B.1 continued from previous page

# Pyradiomics Class Feature Name

28 Gray Level Difference Matrix LowGrayLevelEmphasis

29 Gray Level Co-Occurrence Matrix JointAverage

30 Gray Level Co-Occurrence Matrix SumAverage

31 Gray Level Co-Occurrence Matrix JointEntropy

32 Gray Level Co-Occurrence Matrix ClusterShade

33 Gray Level Co-Occurrence Matrix MaximumProbability

34 Gray Level Co-Occurrence Matrix Idmn

35 Gray Level Co-Occurrence Matrix JointEnergy

36 Gray Level Co-Occurrence Matrix Contrast

37 Gray Level Co-Occurrence Matrix DifferenceEntropy

38 Gray Level Co-Occurrence Matrix InverseVariance

39 Gray Level Co-Occurrence Matrix DifferenceVariance

40 Gray Level Co-Occurrence Matrix Idn

41 Gray Level Co-Occurrence Matrix Idm

42 Gray Level Co-Occurrence Matrix Correlation

43 Gray Level Co-Occurrence Matrix Autocorrelation

44 Gray Level Co-Occurrence Matrix SumEntropy

45 Gray Level Co-Occurrence Matrix MCC

46 Gray Level Co-Occurrence Matrix SumSquares

47 Gray Level Co-Occurrence Matrix ClusterProminence

48 Gray Level Co-Occurrence Matrix Imc2

49 Gray Level Co-Occurrence Matrix Imc1

50 Gray Level Co-Occurrence Matrix DifferenceAverage

51 Gray Level Co-Occurrence Matrix Id

52 Gray Level Co-Occurrence Matrix ClusterTendency

53 Histogram InterquartileRange

54 Histogram Skewness

55 Histogram Uniformity

56 Histogram Median

57 Histogram Energy

58 Histogram RobustMeanAbsoluteDeviation

59 Histogram MeanAbsoluteDeviation

60 Histogram TotalEnergy

61 Histogram Maximum

62 Histogram RootMeanSquared

63 Histogram 90Percentile

64 Histogram Minimum

65 Histogram Entropy

66 Histogram Range

67 Histogram Variance

68 Histogram 10Percentile
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Table B.1 continued from previous page

# Pyradiomics Class Feature Name

69 Histogram Kurtosis

70 Histogram Mean

71 Gray Level Run-Length Matrix ShortRunLowGrayLevelEmphasis

72 Gray Level Run-Length Matrix GrayLevelVariance

73 Gray Level Run-Length Matrix LowGrayLevelRunEmphasis

74 Gray Level Run-Length Matrix GrayLevelNonUniformityNormalized

75 Gray Level Run-Length Matrix RunVariance

76 Gray Level Run-Length Matrix GrayLevelNonUniformity

77 Gray Level Run-Length Matrix LongRunEmphasis

78 Gray Level Run-Length Matrix ShortRunHighGrayLevelEmphasis

79 Gray Level Run-Length Matrix RunLengthNonUniformity

80 Gray Level Run-Length Matrix ShortRunEmphasis

81 Gray Level Run-Length Matrix LongRunHighGrayLevelEmphasis

82 Gray Level Run-Length Matrix RunPercentage

83 Gray Level Run-Length Matrix LongRunLowGrayLevelEmphasis

84 Gray Level Run-Length Matrix RunEntropy

85 Gray Level Run-Length Matrix HighGrayLevelRunEmphasis

86 Gray Level Run-Length Matrix RunLengthNonUniformityNormalized

87 Gray Level Size Zone Matrix GrayLevelVariance

88 Gray Level Size Zone Matrix ZoneVariance

89 Gray Level Size Zone Matrix GrayLevelNonUniformityNormalized

90 Gray Level Size Zone Matrix SizeZoneNonUniformityNormalized

91 Gray Level Size Zone Matrix SizeZoneNonUniformity

92 Gray Level Size Zone Matrix GrayLevelNonUniformity

93 Gray Level Size Zone Matrix LargeAreaEmphasis

94 Gray Level Size Zone Matrix SmallAreaHighGrayLevelEmphasis

95 Gray Level Size Zone Matrix ZonePercentage

96 Gray Level Size Zone Matrix LargeAreaLowGrayLevelEmphasis

97 Gray Level Size Zone Matrix LargeAreaHighGrayLevelEmphasis

98 Gray Level Size Zone Matrix HighGrayLevelZoneEmphasis

99 Gray Level Size Zone Matrix SmallAreaEmphasis

100 Gray Level Size Zone Matrix LowGrayLevelZoneEmphasis

101 Gray Level Size Zone Matrix ZoneEntropy

102 Gray Level Size Zone Matrix SmallAreaLowGrayLevelEmphasis

103 Neighborhood Gray Tone Difference Matrix Coarseness

104 Neighborhood Gray Tone Difference Matrix Complexity

105 Neighborhood Gray Tone Difference Matrix Strength

106 Neighborhood Gray Tone Difference Matrix Contrast

107 Neighborhood Gray Tone Difference Matrix Busyness
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