High-Frequency Ultrasound Imaging of the Duck Embryo Retina as a Near Real-time Preclinical Platform to Study Advanced Proliferative Diabetic Retinopathy

Chris Kwon¹, Nishant Kumar¹, Justin Xu^{1,2}

Study Overview

- Serves as a proof-of-concept study for future experiments
- Ultimately, establish a platform to evaluate DR therapies and drugs

Diabetic Retinopathy (DR) is a leading cause of blindness in the working class

 Excess amounts of sugar in blood blocks existing blood vessels

- Proliferative DR causes neovascularization
 - Angiogenesis or vasculogenesis
- Mild vision problems progressing to blindness
- Thinning of retinal layer, separation of epidermal membrane, cataracts

Projections for Diabetic Retinopathy in 2030 and 2050 (in millions)

Various limitations exist for current models and technologies

- Anti-angiogenic and anti-VEGF drugs are tested in animal models
 - Ranibizumab (Lucentis), aflibercept (Eylea), bevacizumab (Avastin)
- Histology to evaluate perfusion is resource intensive and not real time
- Ophthalmic imaging requires specific skills and qualifications
- Duck embryo and ultrasound as a potentially better platform for drug evaluation

Example of anti-VEGF drug

Retinal and choroid blood vessels have the same response

- 3 retinal blood vessels + choroid
- Impacts both choroid and retina in the same manner
 - Neovascularization
- Intravitreal injection Anti-VEGF
 - Prevention of growth of new blood vessels
 - Reduces swelling
 - Improves central vision

Anatomy of the eye

Chick embryo eyes can be used as physiologically accurate models of human eyes

- Chicks are diurnal with complex colour vision
- Has the three relevant photoreceptors
- Has a macula
 - Homogenous response to damage/inflammation
- Cone-dominant avian species
- Abundance of retinal tissue

Ex ovo chick embryo

Using Ultrasound Microvessel Imaging (UMI) to delineate retinal & choroidal blood vessels

- Huang et al. developed UMI and applied it to highlight vasculature of tumours
- Uses SVD-based algorithm
- Quantify using MATLAB
- Translate to use on retina and choroid
- Limitation: Physiological Motion

$$Vascularity\ Index\ (VI) = rac{Area_{vessel}}{Area_{ROI}}$$

SVD Lambda Curve

SVD-based UMI can detect an **increase** of **vascularity** in diabetic duck embryo retinas and choroids vs. healthy

Objectives:

- To induce diabetic retinopathy in duck embryos
- To use HF-US coupled with UMI to highlight vasculature in the retinal and choroidal region of duck eyes
- To partially validate diabetic retinopathy using histology

Type-I diabetes and DR can be successfully induced in the chick embryo

- Underdeveloped pancreas in the chick embryos
- Induced diabetes by injecting streptozotocin (STZ) or glucose
- Blood-glucose levels, molecular markers, ERG waves, cataracts, and thinning of retinal layer
- Followed a similar protocol with duck embryos, which have slower but same development cycles

Cataracts

Experimental Timeline

Duck eggs were weighed, incubated, and cracked on ED4

Duck eggs (Top L), Cracking (Bottom L), Incubating (R)

All the eggs selected were 25g ±
 1g

15 eggs were incubated for this experiment

 Water was added to container on ED9 to maintain humidity

Incubate

ED4

ED9

ED12

ED18-19

Harvest

250 mg/mL D-glucose solution was injected into the amnion layer of the embryos on ED12

- 10 embryos survived and were randomized into Control & Treated
- 5 were injected with 2500 mg of D-glucose per kg of egg into the amnion layer
- Approximately 285 μL of 250 mg/mL solution per embryo

Injection of dextrose into the amnion

Incubate •

ED4

ED9

ED12

ED18-19

If you think you might feel queasy, please look away for the next 2 slides!

Two cross-sectional B-mode images of one eye were acquired per embryo

- 5/5 Controls and 3/5 Treated survived for imaging
- VisualSonics Vevo® 2100 system with MS700 transducer at 50 MHz

Ex ovo chick embryo (1st), HF-US imaging setup (2nd & 3rd), Cross-sectional profile of US images (4th)

Incubate

ED4

ED9

ED12

ED18-19

Harvest

Both eyes were harvested and stained with Hematoxylin & Eosin (H&E)

- 3 pairs each of Control and Treated eyes
- Validation of diabetic retinopathy by seeing thinning of retina

ED4

ED9

D12

D18-19

Harvest

UMI can detect microvasculature in the duck

embryo retina and choroid

Acq. FR=107 fps, Repl.FR= 107 fps, Persist off

Diabetic duck retinas and choroids exhibits a greater vascularity index

Vascularity Index (VI) vs. Groups

H&E staining showed a thinning of the retinal layer in diabetic embryos

H&E staining showed a thinning of the retinal layer in diabetic embryos

Retinal Layer Thickness vs. Groups

UMI of the diabetic duck retina can be used to evaluate therapeutic agents Suprachoroidal Space

- UMI could detect microvasculature in the duck embryonic retina and choroid
- H&E results confirmed the presence of DR via retinal thinning
- We may be able to use UMI to evaluate new anti-angiogenic drugs / therapies

Current delivery systems for therapeutic agents in the eye

Project Limitations

- Small sample size for diabetic (n=3)
- Limited validation methods available to us for successful induction of diabetes and DR
- Retina spherical vascular profile 3D image which captures 90+ slices with step sizes
 - Unable to accurately measure retinal vascular density of entire eye
 - However, drugs have same impact on choroid and retina so doesn't invalidate data

Retinal vessels are on the top of the retinal layer

3D tumour rendering from Huang et al.

Future Steps

- Highlight functional vasculature by injection of lectin rhodamine of GFP eggs
- Tuning image acquisition/processing parameters
- More time for diabetic disease progression
- STZ would increase survival rate and cataract formation
- Consult people with experience in duck eye and ophthalmic imaging modalities

Vasculature in RENCA tumor stained by lectin rhodamine

Acknowledgements – Thank you!

Sunnybrook Research Institute

Dr. Hon Leong, PhD

Dr. Emmanuel Chérin, PhD

Dr. David Goertz, PhD

Dr. F. Stuart Foster, PhD

Sara Mar, MSc Candidate

Ophthalmic Advisors

Subhra Singh COA, COT, COMT Nitin Singh COA, COT, COMT

University of Toronto

Romario Regeenes, PhD Candidate

Gary Hoang, Teaching Lab Coordinator

Dr. Naomi Matsuura, PhD, PEng

References

- Huang, C., Lowerison, M.R., Lucien, F. et al. Noninvasive Contrast-Free 3D Evaluation of Tumor Angiogenesis
 with Ultrasensitive Ultrasound Microvessel Imaging. Sci Rep 9, 4907 (2019). https://doi.org/10.1038/s41598019-41373-0
- D. H. Ausprunk and J. Folkman, "Vascular injury in transplanted tissues," Virchows Archiv B Cell Pathology, vol. 21, no. 1, pp. 31–44, Dec. 1976, doi: 10.1007/bf02899142.
- D. Ribatti et al., "In vivo angiogenic activity of neuroblastoma correlates with MYCN oncogene overexpression," International Journal of Cancer, vol. 102, no. 4, pp. 351–354, Oct. 2002, doi: 10.1002/ijc.10742.
- C.-F. Cho, A. Ablack, H.-S. Leong, A. Zijlstra, and J. Lewis, "Evaluation of Nanoparticle Uptake in Tumors in Real Time Using Intravital Imaging," Journal of Visualized Experiments, no. 52, Jun. 2011, doi: 10.3791/2808.
- "Hyper-Personalized Medicine Using Patient Derived Xenografts (PDXovo) for Renal Cell Carcinoma Patients -Full Text View - ClinicalTrials.gov," Clinicaltrials.gov, 2020. https://clinicaltrials.gov/ct2/show/NCT04602702 (accessed Mar. 29, 2022).
- A. Schneider and H. Feussner, "Diagnostic Procedures," Biomedical Engineering in Gastrointestinal Surgery, pp. 87–220, 2017, doi: 10.1016/b978-0-12-803230-5.00005-1.

References

- "Vevo 2100 Linear Imaging | FUJIFILM VisualSonics," Visualsonics.com, 2022.
 https://www.visualsonics.com/product/imaging-systems/vevo-2100 (accessed Mar. 30, 2022).
- D. Goldenberg, J. Shahar, A. Loewenstein, and M. Goldstein, "DIAMETERS OF RETINAL BLOOD VESSELS IN A HEALTHY COHORT AS MEASURED BY SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY," Retina, vol. 33, no. 9, pp. 1888–1894, Oct. 2013, doi: 10.1097/iae.0b013e31829477f2.
- Liheng Shi, Michael L. Ko, Cathy Chia-Yu Huang, So-Young Park, Min-Pyo Hong, Chaodong Wu, Gladys Y.-P. Ko,
 "Chicken Embryos as a Potential New Model for Early Onset Type I Diabetes", Journal of Diabetes Research, vol. 2014, Article ID 354094, 10 pages, 2014. https://doi.org/10.1155/2014/354094
- "Diabetic Retinopathy Data and Statistics | National Eye Institute," Nih.gov, 2012. https://www.nei.nih.gov/learn-about-eye-health/outreach-campaigns-and-resources/eye-health-data-and-statistics/diabetic-retinopathy-data-and-statistics (accessed Mar. 30, 2022).
- R. Robinson, V. A. Barathi, S. S. Chaurasia, T. Y. Wong, and T. S. Kern, "Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals," Disease Models & Mechanisms, vol. 5, no. 4, pp. 444–456, Jul. 2012, doi: 10.1242/dmm.009597.
- Kur, Joanna & Newman, Eric & Chan-Ling, Tailoi. (2012). Cellular and physiological mechanisms underlying blood Flow regulation in the Retina and Choroid in health and disease [Review]. Progress in retinal and eye research. 31. 377-406. 10.1016/j.preteyeres.2012.04.004.

Supplementary Slides

Chick embryo assays are used to study eyerelated diseases

 Retinal neovascularization (Glaser et al., 1980)

• wAMD treatment testing (Samkoe et al., 2007)

 Model diabetic retinopathy (Shi et al., 2014)

Ex ovo chick embryo

Animal Model Limitations

- Rodent retinas do not have a macula, cannot serve as an adequate model of diabetic macular edema
- Chronic inflammation contribute to DR but mouse models poorly mimic human inflammatory diseases
- The rod-dominant nocturnal retinas is not the best model to address the dysfunction and apoptosis of cones in human DR.

Model	Zebrafish	Dog	Rat
Limitations	Resource IntensiveNot closely related to humans	Resource intensiveLong time to develop diabetes	Not representative of the human eyeLack macula, roddominant

Some details about HF-US B-mode acquisition and image processing parameters

- 35 μm nominal axial, 70 μm nominal lateral
- TxFrequency: 50,000,000 Hertz (50 MHz)
- TxCycles: 1
- TxPower: 100
- RxGain: 21.9758
- LineDensity: High
- LinePitch: 1.9000e-05
- NumFocalZones: 1
- NumSamples: 584
- NumLines: 512
- FocalZonesPos: 0.0075

- NumFrames: 630
- DepthMin: 1.0000e-03
- DepthMax: 0.0080
- Width: 0.0097
- SamplingFrequency: 64,000,000
- SoundSpeed: 1540
- FrameRate: 107.3829
- AttenuationParam: 0.04
- InterpType: Cubic
- PyramidLevels: 3

Statistical analysis results for VI

		now big is the difference?	
		Mean of column A	0.3545
Table Analyzed	Data 1	Mean of column B	0.5723
		Difference between means (B -	0.2178 ±
	Treated	A) ± SEM	0.05450
Column B	(Diabetic)		0.09908 to
VS.	VS.	95% confidence interval	0.3366
Column A	Control	R squared (eta squared)	0.5710
Unpaired t test		F test to compare variances	
P value	0.0018	F, DFn, Dfd	1.275, 5, 7
P value summary	**	P value	0.7416
Significantly different (P <		P value summary	ns
0.05)?	Yes	Significantly different (P <	
One- or two-tailed P value?	Two-tailed	0.05)?	No
	t=3.997,		
t, df	df=12	Data analyzed	
		Sample size, column A	8
		Sample size, column B	6

How hig is the difference?

Statistical analysis results for thickness

		now big is the difference?	
		Mean of column A	244.5
Table Analyzed	Data 2	Mean of column B	149.6
Table Allalyzed		Difference between means (B - A)	
	Trooted	± SEM	-94.93 ± 17.26
	Treated		-133.4 to -
Column B	(Diabetic)	95% confidence interval	56.49
VS.	VS.	R squared (eta squared)	0.7517
Column A	Control	it oquared (eta oquared)	0.7017
		F test to compare variances	
Unpaired t test		F, DFn, Dfd	2.177, 5, 5
P value	0.0003	P value	0.4134
P value summary	***	P value summary	ns
Significantly different (P <		·	
0.05)?	Yes	Significantly different (P < 0.05)?	No
One- or two-tailed P value?	Two-tailed		
t, df	t=5.502, df=10	Data analyzed	
		Sample size, column A	6
		Sample size, column B	6

How hig is the difference?

HF-US images were compensated for some motion from embryonic cardiac activity

• Some motion compensation using MATLAB function (overcome limitation of Huang et al., 2019)

Pre-Motion Correction

Post-Motion Correction

In-plane Motion Compensation via MATLAB using non-rigid image registration (imregdemons)

Vessel Diameter

- Vessel Diameter from CAM should be approximately 10-50 microns
 - Compared CAM Tumour vessel diameter to Rat Tumour Vessel diameter
 - 1- 10 and <12 microns respectively
 - Fairly equivalent
 - Proportionally we then figured out the retinal vessel diameter
 - Small arterioles in rat retinas have a diameter of 10-50 microns
 - Compared to this value, vessel diameter should be approximately 10-50 microns

- Humans retinal blood vessels 135.73+/- 15.64 microns
- CAM retinal blood vessels approximately 10-50 microns in diameter

Casorati Matrix

SVD

SVD transformations and change of basis. (source)

From the graph we see that SVD does following steps:

- change of the basis from standard basis to basis V (using V^t). Note that in graph this is shown as simple rotation
- ullet apply transformation described by matrix Σ . This scales our vector in basis V
- change of the basis from V to basis U. Because our original matrix M isn't square, matrix U can't have same dimensions as V and we can't return to our original standard basis (see picture "SVD matrices")

• Fix the sample in 10%

- Sample is dehydrated (replace with ETOH)
- Sampled is placed into xylene for a couple of times
- Wax is poured into the sample and hardened

Sectioning Protocol

- Waxed sample is sectioned using a microtome:
 - Paraffin wax sample is mounted onto the microtome
 - Machine is set to trim at 40um
 - 500um is trimmed off or until the center of the sample is reached
 - Machine then switches to section at 5um and cut sections
 - Cut sections are placed in a water bath at 37 degrees
- Stain with H&E

More Sectioning

Ranibizumab

- One of the most common VEGF drugs to use
- Intravitreal injection
- Study shows that it will help with choroidal neovascularization
- All patients improved in visual acuity
- Did not demonstrate deterioration
- Regressed CNV

High-Frequency Ultrasound

- 1-MHz continuous ultrasound, with a half-value depth of approximately 2.3 cm, is frequently used to treat deep tissues that are approximately 2.3 to 5 cm deep
 - Issue is the axial and lateral resolution is terrible
- 50 MHz with a depth of 8-9 mm
 - Great axial and lateral resolution
 - Acceptable as the duck eye is approximately 9.1mm in diameter

HFUS and OCT

- Higher resolution and can see morphological details in OCT
 - Axial and lateral resolutions are amazing
- HFUS has a much better depth penetration than OCT
- Furthermore, since the OCT is a lightbased tech, cloudiness within the vision will negatively impact it
 - Cloudy lenses will reduce image quality still remains reliable
 - · Causing artifacts in viewing
 - Higher signal to noise ratio

Huang et al. Paper Slides

UMI has clinical applications and can be used for hyper-personalized treatment planning

- Clinically significant
 - Noninvasive, contrast-free
 - Commercially available ultrasound machines

- Drug paneling with patient-derived xenografts (PDXs)
 - Rapidly evaluate anti-angiogenic agents
- Retinal vessel imaging in diabetic retinopathy

Conventional power doppler struggles with microvessels

Separating background noise from true flow in slow flowing blood vessels

CAM implanted tumours from RENCA cell line are vascularized

SVD-based clutter filtering in UMI delineates microvessels

UMI demonstrates superior microvascular detection and reduced tissue background

UMI correlates with fluorescent histology

QUANTIFY

$$VI = \frac{Area_{vessel}}{Area_{ROI}}$$

STAINING

Rhodamin Lectin

CORRELATION

- UMI is moderate but significant
- One-way ANOVA using Holm-Šídák

UMI confirms anti-angiogenic treatment effect as seen in fluorescent imaging

